Flag varieties : an interplay of geometry, combinatorics, and representation theory
- 作者: Lakshmibai, V., author.
- 其他作者:
- 其他題名:
- Texts and readings in mathematics ;
- 出版: Singapore : Springer Singapore :Imprint: Springer
- 版本:Second edition.
- 叢書名: Texts and readings in mathematics,volume 53
- 主題: Geometry, Algebraic. , Flag manifolds. , Representations of groups. , Semisimple Lie groups. , Schubert varieties. , Mathematics. , Group Theory and Generalizations. , Associative Rings and Algebras. , Algebraic Geometry.
- ISBN: 9789811313936 (electronic bk.)
- FIND@SFXID: CGU
- 資料類型: 電子書
- 內容註: Chapter 1. Preliminaries -- Chapter 2. Structure Theory of Semisimple Rings -- Chapter 3. Representation Theory of Finite Groups -- Chapter 4. Representation Theory of the Symmetric Group -- Chapter 5. Symmetric Polynomials -- Chapter 6. Schur-Weyl Duality and the Relationship Between Representations of Sd and GLn (C) -- Chapter 7. Structure Theory of Complex Semisimple Lie Algebras -- Chapter 8. Representation Theory of Complex Semisimple Lie Algebras -- Chapter 9. Generalities on Algebraic Groups -- Chapter 10. Structure Theory of Reductive Groups -- Chapter 11. Representation Theory of Semisimple Algebraic Groups -- Chapter 12. Geometry of the Grassmannian, Flag and their Schubert Varieties via Standard Monomial Theory -- Chapter 13. Singular Locus of a Schubert Variety in the Flag Variety SLn=B -- Chapter 14. Applications -- Chapter 15. Free Resolutions of Some Schubert Singularities -- Chapter 16. Levi Subgroup Actions on Schubert Varieties, and Some Geometric Consequences.
- 摘要註: This book discusses the importance of flag varieties in geometric objects and elucidates its richness as interplay of geometry, combinatorics and representation theory. The book presents a discussion on the representation theory of complex semisimple Lie algebras, as well as the representation theory of semisimple algebraic groups. In addition, the book also discusses the representation theory of symmetric groups. In the area of algebraic geometry, the book gives a detailed account of the Grassmannian varieties, flag varieties, and their Schubert subvarieties. Many of the geometric results admit elegant combinatorial description because of the root system connections, a typical example being the description of the singular locus of a Schubert variety. This discussion is carried out as a consequence of standard monomial theory. Consequently, this book includes standard monomial theory and some important applications--singular loci of Schubert varieties, toric degenerations of Schubert varieties, and the relationship between Schubert varieties and classical invariant theory. The two recent results on Schubert varieties in the Grassmannian have also been included in this book. The first result gives a free resolution of certain Schubert singularities. The second result is about certain Levi subgroup actions on Schubert varieties in the Grassmannian and derives some interesting geometric and representation-theoretic consequences.
-
讀者標籤:
- 系統號: 005432413 | 機讀編目格式
館藏資訊
This book discusses the importance of flag varieties in geometric objects and elucidates its richness as interplay of geometry, combinatorics and representation theory. The book presents a discussion on the representation theory of complex semisimple Lie algebras, as well as the representation theory of semisimple algebraic groups. In addition, the book also discusses the representation theory of symmetric groups. In the area of algebraic geometry, the book gives a detailed account of the Grassmannian varieties, flag varieties, and their Schubert subvarieties. Many of the geometric results admit elegant combinatorial description because of the root system connections, a typical example being the description of the singular locus of a Schubert variety. This discussion is carried out as a consequence of standard monomial theory. Consequently, this book includes standard monomial theory and some important applications—singular loci of Schubert varieties, toric degenerations of Schubert varieties, and the relationship between Schubert varieties and classical invariant theory. The two recent results on Schubert varieties in the Grassmannian have also been included in this book. The first result gives a free resolution of certain Schubert singularities. The second result is about certain Levi subgroup actions on Schubert varieties in the Grassmannian and derives some interesting geometric and representation-theoretic consequences.