詳細書目資料

資料來源: Google Book
8
0
0
0
0

Social network analysis in predictive policing : concepts, models and methods

  • 作者: Tayebi, Mohammad A., author.
  • 其他作者:
  • 其他題名:
    • Lecture notes in social networks.
  • 出版: Cham : Springer International Publishing :Imprint: Springer
  • 叢書名: Lecture notes in social networks,
  • 主題: Police--Data processing. , Computer Science. , Data Mining and Knowledge Discovery. , Policing. , Applications of Graph Theory and Complex Networks. , Systems and Data Security.
  • ISBN: 9783319414928 (electronic bk.) 、 9783319414911 (paper)
  • FIND@SFXID: CGU
  • 資料類型: 電子書
  • 內容註: Introduction -- Social Network Analysis in Predictive Policing -- Structure of Co-offending Networks -- Organized Crime Group Detection -- Suspect Investigation -- Co-offence Prediction -- Personalized Crime Location Prediction -- Concluding remarks -- References.
  • 摘要註: This book focuses on applications of social network analysis in predictive policing. Data science is used to identify potential criminal activity by analyzing the relationships between offenders to fully understand criminal collaboration patterns. Co-offending networks--networks of offenders who have committed crimes together--have long been recognized by law enforcement and intelligence agencies as a major factor in the design of crime prevention and intervention strategies. Despite the importance of co-offending network analysis for public safety, computational methods for analyzing large-scale criminal networks are rather premature. This book extensively and systematically studies co-offending network analysis as effective tool for predictive policing. The formal representation of criminological concepts presented here allow computer scientists to think about algorithmic and computational solutions to problems long discussed in the criminology literature. For each of the studied problems, we start with well-founded concepts and theories in criminology, then propose a computational method and finally provide a thorough experimental evaluation, along with a discussion of the results. In this way, the reader will be able to study the complete process of solving real-world multidisciplinary problems.
  • 讀者標籤:
  • 引用連結:
  • Share:
  • 系統號: 005371617 | 機讀編目格式
  • 館藏資訊

    This book focuses on applications of social network analysis in predictive policing. Data science is used to identify potential criminal activity by analyzing the relationships between offenders to fully understand criminal collaboration patterns. Co-offending networks—networks of offenders who have committed crimes together—have long been recognized by law enforcement and intelligence agencies as a major factor in the design of crime prevention and intervention strategies. Despite the importance of co-offending network analysis for public safety, computational methods for analyzing large-scale criminal networks are rather premature. This book extensively and systematically studies co-offending network analysis as effective tool for predictive policing. The formal representation of criminological concepts presented here allow computer scientists to think about algorithmic and computational solutions to problems long discussed in the criminology literature. For each of the studied problems, we start with well-founded concepts and theories in criminology, then propose a computational method and finally provide a thorough experimental evaluation, along with a discussion of the results. In this way, the reader will be able to study the complete process of solving real-world multidisciplinary problems.

    資料來源: Google Book
    延伸查詢 Google Books Amazon
    回到最上