詳細書目資料

資料來源: Google Book
7
0
0
0
0

Self-oscillations in dynamic systems a new methodology via two-relay controllers / [electronic resource] :

  • 其他作者:
  • 其他題名:
    • Systems & control: foundations & applications
  • 出版: Cham : Springer International Publishing :Imprint: Birkhauser
  • 叢書名: Systems & control: foundations & applications
  • 主題: Oscillations , Relay control systems. , Mathematics , Systems Theory, Control. , Control. , Engineering design
  • ISBN: 9783319233031 (electronic bk.) 、 9783319233024 (paper)
  • FIND@SFXID: CGU
  • 資料類型: 電子書
  • 內容註: Introduction -- Part I: Design of Self-Oscillations using Two-Relay Controller -- Describing Function-Based Design of TRC for Generation of Self-Oscillation -- Poincare Maps Based Design -- Self-Oscillation via Locus of a Perturbed Relay System Design (LPRS) -- Part II: Robustification of the Self-Oscillation Generated by Two-Relay Controller -- Robustification of the Self-Oscillation via Sliding Modes Tracking Controllers -- Output-Based Robust Generation of Self-Oscillations -- Part III: Applications -- Generating Self-Oscillations in Furuta Pendulum -- Three Link Serial Structure Underactuated Robot -- Generation of Self-Oscillations in Systems with Double Integrator -- Fixed-Phase Loop (FPL) -- Appendix A: Describing Function -- Appendix B: The Locus of a Perturbed Relay System (LPRS) -- Appendix C: Poincare Map -- Appendix D: Output Feedback -- References -- Index.
  • 摘要註: This monograph presents a simple and efficient two-relay control algorithm for generation of self-excited oscillations of a desired amplitude and frequency in dynamic systems. Developed by the authors, the two-relay controller consists of two relays switched by the feedback received from a linear or nonlinear system, and represents a new approach to the self-generation of periodic motions in underactuated mechanical systems. The first part of the book explains the design procedures for two-relay control using three different methodologies - the describing-function method, Poincare maps, and the locus-of-a perturbed-relay-system method - and concludes with stability analysis of designed periodic oscillations. Two methods to ensure the robustness of two-relay control algorithms are explored in the second part, one based on the combination of the high-order sliding mode controller and backstepping, and the other on higher-order sliding-modes-based reconstruction of uncertainties and their compensation where Lyapunov-based stability analysis of tracking error is used. Finally, the third part illustrates applications of self-oscillation generation by a two-relay control with a Furuta pendulum, wheel pendulum, 3-DOF underactuated robot, 3-DOF laboratory helicopter, and fixed-phase electronic circuits. Self-Oscillations in Dynamic Systems will appeal to engineers, researchers, and graduate students working on the tracking and self-generation of periodic motion of electromechanical systems, including non-minimum-phase systems. It will also be of interest to mathematicians working on analysis of periodic solutions.
  • 讀者標籤:
  • 引用連結:
  • Share:
  • 系統號: 005137377 | 機讀編目格式
  • 館藏資訊

    This monograph presents a simple and efficient two-relay control algorithm for generation of self-excited oscillations of a desired amplitude and frequency in dynamic systems. Developed by the authors, the two-relay controller consists of two relays switched by the feedback received from a linear or nonlinear system, and represents a new approach to the self-generation of periodic motions in underactuated mechanical systems. The first part of the book explains the design procedures for two-relay control using three different methodologies – the describing-function method, Poincaré maps, and the locus-of-a perturbed-relay-system method – and concludes with stability analysis of designed periodic oscillations. Two methods to ensure the robustness of two-relay control algorithms are explored in the second part, one based on the combination of the high-order sliding mode controller and backstepping, and the other on higher-order sliding-modes-based reconstruction of uncertainties and their compensation where Lyapunov-based stability analysis of tracking error is used. Finally, the third part illustrates applications of self-oscillation generation by a two-relay control with a Furuta pendulum, wheel pendulum, 3-DOF underactuated robot, 3-DOF laboratory helicopter, and fixed-phase electronic circuits. Self-Oscillations in Dynamic Systems will appeal to engineers, researchers, and graduate students working on the tracking and self-generation of periodic motion of electromechanical systems, including non-minimum-phase systems. It will also be of interest to mathematicians working on analysis of periodic solutions.

    資料來源: Google Book
    延伸查詢 Google Books Amazon
    回到最上