Automotive mechatronics operational and practical issues. Volume II / [electronic resource] :
- 作者: Fijalkowski, B. T.
- 其他作者:
- 出版: Dordrecht : Springer Science+Business Media B.V.
- 叢書名: Intelligent systems, control and automation: Science and engineering ;v.52
- 主題: Mechatronics , Automobiles--Automatic control , Engineering , Automotive Engineering. , Control, Robotics, Mechatronics. , Machinery and Machine Elements. , Electronics and Microelectronics, Instrumentation.
- ISBN: 9789400711839 (electronic bk.) 、 9789400711822 (paper)
- FIND@SFXID: CGU
- 資料類型: 電子書
-
讀者標籤:
- 系統號: 005069354 | 機讀編目格式
館藏資訊
This book presents operational and practical issues of automotive mechatronics with special emphasis on the heterogeneous automotive vehicle systems approach, and is intended as a graduate text as well as a reference for scientists and engineers involved in the design of automotive mechatronic control systems. As the complexity of automotive vehicles increases, so does the dearth of high competence, multi-disciplined automotive scientists and engineers. This book provides a discussion into the type of mechatronic control systems found in modern vehicles and the skills required by automotive scientists and engineers working in this environment. Divided into two volumes and five parts, Automotive Mechatronics aims at improving automotive mechatronics education and emphasises the training of students’ experimental hands-on abilities, stimulating and promoting experience among high education institutes and produce more automotive mechatronics and automation engineers. The main subject that are treated are: VOLUME I: RBW or XBW unibody or chassis-motion mechatronic control hypersystems; DBW AWD propulsion mechatronic control systems; BBW AWB dispulsion mechatronic control systems; VOLUME II: SBW AWS conversion mechatronic control systems; ABW AWA suspension mechatronic control systems. This volume was developed for undergraduate and postgraduate students as well as for professionals involved in all disciplines related to the design or research and development of automotive vehicle dynamics, powertrains, brakes, steering, and shock absorbers (dampers). Basic knowledge of college mathematics, college physics, and knowledge of the functionality of automotive vehicle basic propulsion, dispulsion, conversion and suspension systems is required.