詳細書目資料

9
0
0
0
0

Water in biomechanical and related systems [electronic resource]

  • 其他作者:
  • 其他題名:
    • Biologically-inspired systems ;
  • 出版: Cham : Springer International Publishing :Imprint: Springer
  • 叢書名: Biologically-inspired systems,v.17
  • 主題: Water. , Biomechanics. , Life Sciences, general. , Biodiversity. , Community & Population Ecology. , Biological and Medical Physics, Biophysics. , Computer Applications. , Biomedical Engineering and Bioengineering.
  • ISBN: 9783030672270 (electronic bk.) 、 9783030672263 (paper)
  • FIND@SFXID: CGU
  • 資料類型: 電子書
  • 內容註: Chapter1. Current overview on the role of water in biomechanical and related systems -- Chapter2. Sense and nonsense about water -- Chapter3. Water nanoclusters in cosmology, astrobiology, the RNA world and biomedicine: the universe as a biosystem -- Chapter4. Solvent induced effects on protein folding -- Chapter5 Analysis of protein intramolecular and solvent bonding on example of major sonovital fluid component -- Chapter6. Water behavior near the lipid bilayer -- Chapter7. Water molecules organization surrounding ions, amphiphilic protein residues, and hyaluronan -- Chapter8. Pathological water science - four examples and what they have in common -- Chapter9. Powdery mildew fungus erysiphe alphitoides turns oak leaf surface to the higly hydrophobic state -- Chapter10. Physics of suction cups in air and in water -- Chapter 11. Water transport through synthetic membranes as inspired by transport through biological membranes -- Chapter 12. Travelling waves connected to blood flow and motion of arterial walls -- Chapter 13. Fractal properties of flocs, fitration cakes and biofilms in water and wastewater treatment process -- Chapter 14. Soil hydrology -- Chapter 15. External solicitations, pollution and patterns of water stock: remarks and some modeling proposals -- Chapter 16. Water on livestock: biological role and global perspective on water demand and supply chains.
  • 摘要註: The contributed volume puts emphasis on a superior role of water in (bio)systems exposed to a mechanical stimulus. It is well known that water plays an extraordinary role in our life. It feeds mammalian or other organism after distributing over its whole volume to support certain physiological and locomotive (friction-adhesion) processes to mention but two of them, both of extreme relevance. Water content, not only in the mammalian organism but also in other biosystems such as whether those of soil which is equipped with microbiome or the ones pertinent to plants, having their own natural network of water vessels, is always subjected to a force field. The decisive force field applied to the biosystems makes them biomechanically agitated irrespective of whether they are subjected to external or internal force-field conditions. It ought to be noted that the decisive mechanical factor shows up in a close relation with the space-and-time scale in which it is causing certain specific phenomena to occur. The scale problem, emphasizing the range of action of gravitational force, thus the millimeter or bigger force vs. distance scale, is supposed to enter the so-called macroscale approach to water transportation through soil or plants' roots system. It is merely related to a percolation problem, which assumes to properly inspect the random network architecture assigned to the biosystems invoked. The capillarity conditions turn out to be of prior importance, and the porous-medium effect has to be treated, and solved in a fairly approximate way. The deeper the scale is penetrated by a force-exerting and hydrated agent the more non-gravitational force fields manifest. This can be envisaged in terms of the corresponding thermodynamic (non-Newtonian) forces, and the phenomena of interest are mostly attributed to suitable changes of the osmotic pressure. In low Reynolds number conditions, thus in the (sub)micrometer distance-scale zone, they are related with the corresponding
  • 讀者標籤:
  • 引用連結:
  • Share:
  • 系統號: 005535028 | 機讀編目格式
  • 館藏資訊

    回到最上