An introduction to statistics with Python with applications in the life sciences / [electronic resource] :
- 作者: Haslwanter, Thomas.
- 其他作者:
- 其他題名:
- Statistics and computing.
- 出版: Cham : Springer International Publishing :Imprint: Springer
- 版本:Second edition.
- 叢書名: Statistics and computing,
- 主題: Mathematical statistics--Data processing. , Python (Computer program language) , Biometry.
- ISBN: 9783030973711 (electronic bk.) 、 9783030973704 (paper)
- FIND@SFXID: CGU
- 資料類型: 電子書
- 內容註: I Python and Statistics -- 1 Introduction -- 2 Python -- 3 Data Input -- 4 Data Display -- II Distributions and Hypothesis Tests -- 5 Basic Statistical Concepts -- 6 Distributions of One Variable -- 7 Hypothesis Tests -- 8 Tests of Means of Numerical Data -- 9 Tests on Categorical Data -- 10 Analysis of Survival Times -- III Statistical Modelling -- 11 Finding Patterns in Signals -- 12 Linear Regression Models -- 13 Generalized Linear Models -- 14 Bayesian Statistics -- Appendices -- A Useful Programming Tools -- B Solutions -- C Equations for Confidence Intervals -- D Web Ressources -- Glossary -- Bibliography -- Index.
- 摘要註: Now in its second edition, this textbook provides an introduction to Python and its use for statistical data analysis. It covers common statistical tests for continuous, discrete and categorical data, as well as linear regression analysis and topics from survival analysis and Bayesian statistics. For this new edition, the introductory chapters on Python, data input and visualization have been reworked and updated. The chapter on experimental design has been expanded, and programs for the determination of confidence intervals commonly used in quality control have been introduced. The book also features a new chapter on finding patterns in data, including time series. A new appendix describes useful programming tools, such as testing tools, code repositories, and GUIs. The provided working code for Python solutions, together with easy-to-follow examples, will reinforce the reader's immediate understanding of the topic. Accompanying data sets and Python programs are also available online. With recent advances in the Python ecosystem, Python has become a popular language for scientific computing, offering a powerful environment for statistical data analysis. With examples drawn mainly from the life and medical sciences, this book is intended primarily for masters and PhD students. As it provides the required statistics background, the book can also be used by anyone who wants to perform a statistical data analysis.
-
讀者標籤:
- 系統號: 005508947 | 機讀編目格式
館藏資訊
Now in its second edition, this textbook provides an introduction to Python and its use for statistical data analysis. It covers common statistical tests for continuous, discrete and categorical data, as well as linear regression analysis and topics from survival analysis and Bayesian statistics. For this new edition, the introductory chapters on Python, data input and visualization have been reworked and updated. The chapter on experimental design has been expanded, and programs for the determination of confidence intervals commonly used in quality control have been introduced. The book also features a new chapter on finding patterns in data, including time series. A new appendix describes useful programming tools, such as testing tools, code repositories, and GUIs. The provided working code for Python solutions, together with easy-to-follow examples, will reinforce the reader’s immediate understanding of the topic. Accompanying data sets and Python programs are also available online. With recent advances in the Python ecosystem, Python has become a popular language for scientific computing, offering a powerful environment for statistical data analysis. With examples drawn mainly from the life and medical sciences, this book is intended primarily for masters and PhD students. As it provides the required statistics background, the book can also be used by anyone who wants to perform a statistical data analysis.