Lie methods in deformation theory [electronic resource]
- 作者: Manetti, Marco.
- 其他作者:
- 其他題名:
- Springer monographs in mathematics.
- 出版: Singapore : Springer Nature Singapore :Imprint: Springer
- 叢書名: Springer monographs in mathematics,
- 主題: Lie algebras. , Category Theory, Homological Algebra. , Commutative Rings and Algebras. , Differential Geometry.
- ISBN: 9789811911859 (electronic bk.) 、 9789811911842 (paper)
- FIND@SFXID: CGU
- 資料類型: 電子書
- 內容註: 1. An Overview of Deformation Theory of Complex Manifolds -- 2. Lie Algebras -- 3. Functors of Artin Rings -- 4. Infinitesimal Deformations of Complex Manifolds and Vector Bundles -- 5. Differential Graded Lie Algebras -- 6. Maurer-Cartan Equation and Deligne Groupoids -- 7. Totalization and Descent of Deligne Groupoids -- 8. Deformations of Complex Manifolds and Holomorphic Maps -- 9. Poisson, Gerstenhaber and Batalin-Vilkovisky Algebras -- 10. L1-algebras -- 11. Coalgebras and Coderivations -- 12. L1-morphisms -- 13. Formal Kuranishi Families and Period Maps -- References.
- 摘要註: This book furnishes a comprehensive treatment of differential graded Lie algebras, L-infinity algebras, and their use in deformation theory. We believe it is the first textbook devoted to this subject, although the first chapters are also covered in other sources with a different perspective. Deformation theory is an important subject in algebra and algebraic geometry, with an origin that dates back to Kodaira, Spencer, Kuranishi, Gerstenhaber, and Grothendieck. In the last 30 years, a new approach, based on ideas from rational homotopy theory, has made it possible not only to solve long-standing open problems, but also to clarify the general theory and to relate apparently different features. This approach works over a field of characteristic 0, and the central role is played by the notions of differential graded Lie algebra, L-infinity algebra, and Maurer-Cartan equations. The book is written keeping in mind graduate students with a basic knowledge of homological algebra and complex algebraic geometry as utilized, for instance, in the book by K. Kodaira, Complex Manifolds and Deformation of Complex Structures. Although the main applications in this book concern deformation theory of complex manifolds, vector bundles, and holomorphic maps, the underlying algebraic theory also applies to a wider class of deformation problems, and it is a prerequisite for anyone interested in derived deformation theory. Researchers in algebra, algebraic geometry, algebraic topology, deformation theory, and noncommutative geometry are the major targets for the book.
-
讀者標籤:
- 系統號: 005516433 | 機讀編目格式
館藏資訊
This book furnishes a comprehensive treatment of differential graded Lie algebras, L-infinity algebras, and their use in deformation theory. We believe it is the first textbook devoted to this subject, although the first chapters are also covered in other sources with a different perspective. Deformation theory is an important subject in algebra and algebraic geometry, with an origin that dates back to Kodaira, Spencer, Kuranishi, Gerstenhaber, and Grothendieck. In the last 30 years, a new approach, based on ideas from rational homotopy theory, has made it possible not only to solve long-standing open problems, but also to clarify the general theory and to relate apparently different features. This approach works over a field of characteristic 0, and the central role is played by the notions of differential graded Lie algebra, L-infinity algebra, and Maurer–Cartan equations. The book is written keeping in mind graduate students with a basic knowledge of homological algebra and complex algebraic geometry as utilized, for instance, in the book by K. Kodaira, Complex Manifolds and Deformation of Complex Structures. Although the main applications in this book concern deformation theory of complex manifolds, vector bundles, and holomorphic maps, the underlying algebraic theory also applies to a wider class of deformation problems, and it is a prerequisite for anyone interested in derived deformation theory. Researchers in algebra, algebraic geometry, algebraic topology, deformation theory, and noncommutative geometry are the major targets for the book.