詳細書目資料

12
0
0
0
0

Reconfigurable cellular neural networks and their applications

  • 作者: Yalcin, Mustak E., author.
  • 其他作者:
  • 其他題名:
    • SpringerBriefs in nonlinear circuits.
  • 出版: Cham : Springer International Publishing :Imprint: Springer
  • 叢書名: SpringerBriefs in nonlinear circuits,
  • 主題: Neural networks (Computer science) , Computational Intelligence. , Artificial Intelligence. , Electronic Circuits and Devices. , Circuits and Systems.
  • ISBN: 9783030178406 (electronic bk.) 、 9783030178390 (paper)
  • FIND@SFXID: CGU
  • 資料類型: 電子書
  • 內容註: Introduction -- Artificial Neural Network Models -- Artificial Olfaction System -- Implementations of CNNs -- Index.
  • 摘要註: This book explores how neural networks can be designed to analyze sensory data in a way that mimics natural systems. It introduces readers to the cellular neural network (CNN) and formulates it to match the behavior of the Wilson-Cowan model. In turn, two properties that are vital in nature are added to the CNN to help it more accurately deliver mimetic behavior: randomness of connection, and the presence of different dynamics (excitatory and inhibitory) within the same network. It uses an ID matrix to determine the location of excitatory and inhibitory neurons, and to reconfigure the network to optimize its topology. The book demonstrates that reconfiguring a single-layer CNN is an easier and more flexible solution than the procedure required in a multilayer CNN, in which excitatory and inhibitory neurons are separate, and that the key CNN criteria of a spatially invariant template and local coupling are fulfilled. In closing, the application of the authors' neuron population model as a feature extractor is exemplified using odor and electroencephalogram classification.
  • 讀者標籤:
  • 引用連結:
  • Share:
  • 系統號: 005476865 | 機讀編目格式
  • 館藏資訊

    回到最上